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Abstract

We study a mesh smoothing algorithm based on the moving mesh PDE (MMPDE) moving mesh method. For the
MMPDE, we employ a simple and efficient direct geometric discretization of the underlying meshing functional on
simplicial meshes. The nodal mesh velocities can be expressed in a simple, analytical matrix form, which makes the
implementation of the method easy, simple, and efficient. Numerical examples are provided.
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1. Introduction

Meshes generated with automatic tools often contain poorly shaped elements especially near domain
boundaries and their quality needs to be improved before they can be used in the numerical solution of PDEs
or other applications. Mesh smoothing improves the mesh quality by moving vertex locations. It is often
effective in eliminating extremal dihedral angles in the mesh. Commonly used mesh smoothing methods are
Laplacian smoothing and its variants (Field [4] and Lo [17]), where a vertex is moved to the geometric center
of its neighboring vertices. While economic, easy to implement, and often effective, Laplacian smoothing
does not guarantee improvements of the mesh quality.

Alternatives are optimization-based methods that are effective for a variety of mesh quality measures.
For example, Bank [1] uses the ratio of the area to the sum of the squared edge lengths for triangular
meshes, Shephard and Georges [18] employ the ratio of the volume to a power of the sum of the squared
face areas for tetrahedral meshes, Freitag and Ollivier-Gooch [7] use various angle-based measures, and
Freitag and Knupp [6] utilize the condition number of the Jacobian matrix of the affine mapping between
the reference element and physical elements. Knupp [13,15] proposes several shape quality measures based
on the Jacobian matrix and Canann et al. [2] propose a distortion metric for triangles and quadrilaterals. A
parallel algorithm that solves a sequence of independent subproblems is proposed by Freitag et al. [5] for a
class of local mesh-smoothing techniques.
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In this project, we study a mesh smoothing algorithm based on a moving mesh method and move the
mesh continuously in time by means of a moving mesh PDE, defined as the gradient flow equation of a
meshing functional. The key point of the approach is a simple and efficient direct geometric discretization of
the meshing functional on simplicial meshes, which was recently introduced by Huang and Kamenski [9].
Most importantly, the nodal mesh velocities can be expressed in a simple, analytical matrix form, which
makes the implementation of the method relatively easy and simple. It also makes the method amenable to
the development of efficient solvers and parallel computation.

The new method has the following advantages: it is based on a continuous functional for which the
existence of minimizers is known, the functional has a clear geometric meaning for controlling mesh shape
and size quality, mesh velocities have a simple, analytical matrix form, which makes programming relatively
easy, the resulting ODE systems can be solved locally or globally, and it is amenable to parallel computation.

2. MMPDE moving mesh method

In the moving mesh context, it is common to describe a moving mesh in terms of coordinate transformations.
Assume that we are given a computational domain Ωc, which can be the same as the physical domain Ω ⊂ Rd,
d ≥ 1. A moving mesh on Ω is the image of a computational mesh on Ωc under a time dependent coordinate
transformation x = x(ξ, t) : Ωc → Ω. The coordinate transformation in the MMPDE method is determined
as the solution of the gradient flow equation of a meshing functional (i.e., an objective functional to optimize).
Many existing functionals can be written in the form

I[ξ] =
∫

Ω
G(J,det(J),M,x)dx, (1)

where ξ = ξ(x, t) : Ω→ Ωc is the inverse coordinate transformation of x = x(ξ, t), G is a sufficiently smooth
function in all of its arguments, J = ∂ξ

∂x is the Jacobian matrix of ξ = ξ(x, t), and M is the metric tensor
used for controlling mesh concentration (assumed to be symmetric and uniformly positive definite on Ω).
Note that (1) is formulated in terms of the inverse coordinate transformation since functionals formulated
this way are known to be less likely to produce singular coordinate transformations [3].

A number of meshing functionals have been developed in the past based on error estimates and physical
and geometric considerations, e.g., see [12,14,16] and references therein. (For a detailed numerical comparison
of various functionals see [10].)

Example 2.1 (Generalized Winslow’s functional [20]). This functional reads as

I[ξ] =
∫

Ω
tr(JM−1JT ) dx, (2)

where tr(·) is the trace of a matrix and M−1 serves as the diffusion matrix. The functional is coercive and
convex and has a unique minimizer [12, Example 6.2.1].

Since our interest is in the MMPDE method as a mesh smoothing scheme (in the Euclidean metric), we
consider the simplest case M = I, for which the functional becomes

I[ξ] =
∫

Ω
tr(JJT ) dx. (3)

For this functional, we have G = tr(JJT ).

Example 2.2 (Huang’s functional [8]). This functional is based on M-uniformity (requiring the mesh to be
uniform in the metric M),

I[ξ] = θ

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx+ (1− 2θ)d

dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p
dx, (4)
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where 0 ≤ θ ≤ 1 and p > 0 are dimensionless parameters. The M-uniformity is mathematically equivalent to
the so-called alignment (first term) and equidistribution (second term) conditions combined. For 0 < θ ≤ 1

2 ,
dp ≥ 2, and p ≥ 1, the functional is coercive and polyconvex and has a minimizer [12, Example 6.2.2]. For
the case M = I, (4) becomes

I[ξ] = θ

∫
Ω

(
tr(JJT )

) dp
2 dx+ (1− 2θ)d

dp
2

∫
Ω

det(J)p dx (5)

with G = θ
(
tr(JJT )

) dp
2 + (1 − 2θ)d

dp
2 det(J)p. The first term in (5) (alignment) with M = I represents a

shape regularity measure while the second term (equidistribution) represents a volume uniformity measure
(when p > 1). If θ = 1

2 and dp = 2 then the functional reduces to the Winslow’s functional (3).

The MMPDE is defined as the gradient flow equation of I[ξ], i.e.,

∂ξ

∂t
= −P

τ

δI

δξ
,

where δI
δξ is the functional derivative of I, τ is a positive constant used for adjusting the time scale of mesh

movement, and P = P (x, t) is a positive function used for preserving certain scaling invariances; in our
computation we choose P = 1. For the functional (1), this becomes

∂ξ

∂t
= P

τ
∇ ·
(
∂G

∂J
+ ∂G

∂ det(J) det(J)J−1
)
. (6)

Using the identity
∂x

∂t
= −J−1 ∂ξ

∂t
,

we have
∂x

∂t
= −PJ

−1

τ
∇ ·
(
∂G

∂J
+ ∂G

∂ det(J) det(J)J−1
)
. (7)

After exchanging the roles of dependent and independent variables ξ and x on the right-hand side, the
equation can be discretized on a computational mesh Ωc and a set of mesh equations for the nodal mesh
velocities can be obtained. Then, the mesh equations can be integrated with proper boundary conditions for
the vertex locations of the underlying moving mesh.

3. The MMPDE mesh smoothing scheme

A simple approach was proposed in [9] for the implementation of variational mesh generation and
adaptation. This approach can also be used for implementing the MMPDE moving mesh method described in
the previous section. More specifically, we denote by Th and Th,c simplicial meshes on Ω and Ωc, respectively,
and assume that they have the same numbers of elements and vertices and the same connectivity. We also
assume that Th,c has been chosen to be almost uniform in the sense that all of its elements have almost the
same size and are almost equilateral. We will see below that Ωc and Th,c are used only as an intermediate
step and do not appear in the final formulation.

With the approach, the functional (1) is first approximated on Th using a midpoint quadrature rule
with J being approximated by the Jacobian matrix of the affine mapping between elements in Th and their
counterparts in Th,c; the Jacobian matrix can be computed using the edge matrices. The discretized functional
is a function of the locations of the vertices of Th. By assumption, Th,c is known and so are the locations of
its vertices and, thus, the discretized functional is a function of the locations of the vertices of Th only. The
mesh equation for the vertex locations for Th is obtained as the gradient equation of the discretized functional
with respect to the locations. The derivatives of the discretized functional with respect to the locations
can be expressed in a simple, analytical matrix form; the interested reader is referred to [9,11] for details

3



W. Huang, L. Kamenski, and H. Si / Procedia Engineering 00 (2015) 000–000 4

on the derivation. Notice that the functionals (2) and (4) are invariant under translations and rotations of
the computational coordinate ξ, which implies that the elements in Th,c, which are assumed to be almost
equilateral, can be made to be similar to the master element K̂ by translations and rotations. Moreover,
they can be made almost identical to 1

N K̂, where N is the number of the mesh elements, since they have
almost the same size. Thus, as long as the functional (1) is invariant under translations and rotation of ξ,
the computational elements appearing in the final formulation of the mesh equation can be replaced by 1

N K̂

where K̂ is the master element assumed to be chosen as a regular simplex with the unitary volume.
Denote the locations of the vertices of Th by xi, i = 1, . . . , Nv, the element patch associated with vertex

xi by ωi, the generic element in Th by K, and the volume of K by |K|. Then the mesh equation is given by

dxi
dt

= 1
τ

∑
K∈ωi

|K|vKiK , i = 1, . . . , Nv, (8)

where iK is the local index of vertex xi on K and the local mesh velocities are given by
(vK1 )T

...
(vKd )T

 = −GE−1
K + E−1

K

∂G

∂J
ÊE−1

K + ∂G

∂ det(J)
det(Ê)

det(EK)E
−1
K , (vK0 )T = −

d∑
j=1

(vKj )T .

Ê and EK are the edge matrices of K̂ and K and G, ∂G
∂J , and

∂G
∂ det(J) are evaluated at J = ÊE−1

K and
det(J) = det(Ê)/det(EK).

The mesh velocities need to be modified for boundary vertices. For example, if xi is a fixed boundary
vertex, we can replace the corresponding equation by ∂xi

∂t = 0. When xi is allowed to move on a boundary
curve (in 2D) or surface (in 3D) represented by φ(x) = 0, then the mesh velocity ∂xi

∂t needs to be modified
such that its normal component along the curve or surface is zero, i.e., ∇φ(xi) · ∂xi

∂t = 0.
The mesh equation (8) can be integrated using explicit or implicit ODE solvers. It can also be first

discretized in time and the linear system is solved globally (such as a Krylov-subspace method with
preconditioning) or locally (such as Gauss-Seidel or Jacobi iteration). We can also just solve the balance
equations (i.e., set velocities to zero) using global or local iterative methods.

In the following we provide a quick example for MMPDE-based smoothing to improve the mesh quality:
smoothing of a randomly perturbed 2D mesh (Fig. 1) and of a tetrahedral meshe obtained by TetGen [19]
for a cami1a part (Fig. 2). For our computation, we use Huang’s functional (Example 2.2 with θ = 1/3
and p = 2), which provides a better control of the mesh element sizing (equidistribution) than Winslow’s
functional. For the 3D mesh we compare the dihedral angle statistics of the original TetGen mesh with the
dihedral angle statistics after a mesh smoothing iteration.

The proposed smoothing significantly reduces the number of small (0◦–20◦) as well as large (150◦–180◦)
dihedral angles (Fig. 2b, marked with blue color). These first results look quite promising. More work will be
done to investigate the potential of the MMPDE moving mesh approach for the mesh smoothing. Especially
the combination of mesh smoothing with a reconnection step can provide a further improvement.

References

[1] R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Differential Equations. Users’ Guide 7.0. Frontiers
Appl. Math. 15. SIAM, 1994.

[2] S. A. Canann, J. R. Tristano, and M. L. Staten. An approach to combined laplacian and optimization-based smoothing
for triangular, quadrilateral, and quad-dominant meshes. In Proceedings, 7th International Meshing Roundtable, Sandia
National Laboratories, Albuquerque, NM, 1998.

[3] A. S. Dvinsky. Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys., 95:450–476,
1991.

[4] D. A. Field. Laplacian smoothing and Delaunay triangulations. Comm. Appl. Num. Meth., 4:709–712, 1988.
[5] L. Freitag, M. Jones, and P. Plassmann. A parallel algorithm for mesh smoothing. SIAM J. Sci. Comput., 20, 1999.

4



W. Huang, L. Kamenski, and H. Si / Procedia Engineering 00 (2015) 000–000 5

(a) initial, randomly perturbed mesh (b) final, smoothed mesh

Figure 1: Smoothing of a randomly perturbed 2D mesh

(a) mesh example

angle before after angle before after
0 – 5 1 0 80 – 110 30 060 30 087
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20 – 30 8 083 8 701 130 – 140 2 895 3 830
30 – 40 12 172 13 704 140 – 150 1 676 1 739
40 – 50 15 338 15 389 150 – 160 1 033 458
50 – 60 17 175 16 740 160 – 170 307 3
60 – 70 15 208 14 851 170 – 175 0 0
70 – 80 15 703 14 051 175 – 180 0 0

(b) statistics of dihedral angles before and after smoothing

Figure 2: cami1a TetGen mesh, 22 303 elements
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